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A rigid cylinder is initially at relative rest in a uniformly rotating, inviscid, in- 
compressible fluid, with its generators perpendicular to the axis of rotation. The 
fluid is accelerated suddenly to a small constant velocity parallel to the axis of 
rotation, which is maintained thereafter. The growth of the subsequent disturb- 
ance due to the cylinder is interpreted in terms of plane inertial waves, the 
disturbance energy propagating with the local group velocity, which is in the 
plane of the wave front and proportional to the wavelength. Taylor columns, in 
which the fluid moves with the cylinder rather than round it, grow indefinitely 
in both directions parallel to the rotation axis, the headof the column moving with 
finite speed. 

In a slightly viscous fluid, an ultimate steady state is reached, in which the 
columns are of finite length. 

If a cylinder is moved horizontally in a non-rotating uniformly stratified 
Boussinesq liquid, an identical analysis may be applied with a similar interpreta- 
tion in terms of internal gravity waves rather than inertial waves. 

1. Introduction 
This analysis is intended to throw light on the growth of Taylor columns in a 

uniformly rotating homogeneous liquid at low Rossby number, and also on the 
blocking by an obstacle of the two-dimensional motion of a stably stratified fluid 
at  small internal Froude number. The analogy between two-dimensional motions 
in a fluid of non-uniform density and axisymmetric motions in a rotating fluid is 
well known (Yih 1965, ch. 6). There is also a close similarity between such axi- 
symmetric flows and planar ones in which everything is independent of distance 
z in a direction which is fixed in a rotating frame of reference and perpendicular 
to the rotation vector. 

In  this case (figure 1) the components ( u ' , ~ ' )  of velocity in the (x,y)-plane, 
parallel and perpendicular to the rotation axis Ox respectively, correspond to the 
axial and radial velocities in the axisymmetric motion and are described by a 
Cartesian stream function @. The component w'(x,y) in the Ox direction cor- 
responds to a swirl velocity measured relative to solid body rotation. The Coriolis 
force, with components (0, -22Q'w',2Q'w'), acts in the same manner in both 
systems. The centrifugal acceleration can be expressed as the gradient of a 
potential, and if the boundary conditions do not involve pressure explicitly i t  has 
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no effect on the motion. The essential difference between the axisymmetric and 
the planar systems lies in the cylindrical as opposed to rectangular geometry. 
Experimentally, the former is much more convenient; analytically the latter is 
simpler, involving sines and cosines in lieu of Bessel functions. Dynamically, 
there is a close parallel between them. 

However, there is correspondence between the planar motion in a rotating 
frame, and the strictly two-dimensional motion of a Boussinesq liquid in a 
vertical plane relative to a basic state in which Brunt-Vaissala frequency N is 
independent of position (Trustrum 1964). The role of the component 2Q'w' of 
Coriolis force is taken over by a buoyancy force per unit mass cr'. Changes of w' 
are equal to - 2Q' times the displacement 7' of a fluid particle in the Oy direction; 
changes in crf are equal to - Pq'. In either case there is restoring force in the Oy 
direction everywhere proportional to - 7'. This imparts a certain elasticity to the 
fluid motion, resulting in wavelike motions, known as inertial and internal 
gravity waves respectively. The main thesis of this paper is to relate the time- 
dependent growth of a region of stagnant fluid (u' = v' = 0, w', q' + 0 )  ahead of 
an obstacle placed in a uniform stream parallel to Ox to known properties of 
inertial and internal gravity waves. It is developed in the planar geometry, al- 
though similar things can be done in the axisymmetric system. 

The verbal description is entirely in terms of rotating systems and inertial 
waves; an instant translation can be made to uniformly stratified systems and 
internal gravity waves. In  the absence of viscosity and diffusivity for density, the 
mathematical analogy is exact, including non-linear terms. To maintain this with 
dissipation it is necessary that the viscosity be the same in both cases and equal 
to the diffusivity for density, and that on rigid boundaries the variations in 
density from the basic state vanish. However, we will be mainly concerned with 
non-dissipative fluids, except in $9, and even there the somewhat artificial 
boundary condition on the density plays no part in the theory and the results are 
easily generalized to unequal diffusivities. 

Taylor (1922) observed that, when a sphere of radius a' is moved with speed U' 
parallel to the axis of rotation in a fluid which has angular velocity Q', a long 
column of fluid is pushed ahead of the sphere with the same velocity, provided 
the Rossby number, 

is less tham about 0.15. This was confirmed for a streamlined sphere in a tube of 
radius 4a' by Long (1953), who also observed wavelike motions extending a great 
distance behind the body. No quantitative experimental estimates have yet been 
published of the length of the column, nor of the effect of the fluid viscosity on it. 

Stewartson (1952) has analysed the disturbance produced by a sphere in an 
unbounded inviscid liquid which is initially in solid body rotation, when the fluid 
at large distancesis suddenly set into motion with a constant infinitesimal velocity 
parallel to the axis of rotation. After a long time the velocity is almost everywhere 
independent of distance parallel to the rotation axis. A stagnant column extends 
ultimately indefinitely far ahead and behind the sphere. Stewartson (1958) has 
also shown that, if the Rossby number U is finite and equal to 1/5-76, no axi- 
symmetric steadily translating solution exists for an inviscid fluid, in which the 

u = U'/2Q2'a', 
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flow far upstream is merely solid-body rotation. From these two results he sur- 
mises that for all Rossby numbers less than a critical value which is at least 
115.76, a column in which there is a substantial disturbance to uniform flow 
should in an inviscid fluid extend ultimately indefinitely far upstream. 

A feature of his (1952) analysis, which assumes infinitesimal U ,  is that in- 
definitely large velocities and singularities build up in the solution, ultimately 
vitiating the linearization on which it is based. In  the eventual steady state 
which is predicted by the theory these singularities extend all along the bounding 
surface of the stagnant column and on the body itself. However, if the Rossby 
number U is finite but sufficiently small, the development of the flow pattern 
may be followed for an arbitrary long time and to any given extent before the 
non-linear terms become large enough to invalidate the analysis. In  this paper, 
we follow his approach closely, looking more carefully at  the solution for large 
but finite t ,  in particular in regions far from the body where the disturbance has 
only just arrived, also near the edges of the Taylor column, and also close to the 
body. In  all cases the development may be attributed to inertial waves. Far from 
the body the larger-scale waves arrive first, the frequency depending only on 
direction. In  the growing Taylor column, the waves have zero frequency, but 
finite group velocity, which is parallel to the axis of rotation. The continuing input 
of energy into the column is associated with continuous emission of inertial waves 
from the body. The singularities at  the edge of the column only build up as the 
smaller-scale waves (which travel more slowly) arrive. Near the surface of the 
body is a residual of very small-scale waves which have not yet had time to 
propagate away. This residual becomes a singularity because the length scales 
tend to zero while the velocity remains finite. 

Following the insight provided by this interpretation, it is suggested that, 
provided the imposed Rossby number U is sufficiently small, a small non-zero 
kinematic viscosity v' should limit the columns to a length of order L n ' ~ ' ~ / v ' ,  and 
an expression is given for the structure of such a viscous limited column. This is 
reminiscent of the wake far from a small sphere in a very viscous rotating fluid 
(Childress 1964). It is derived by remarking that inertial waves of smaller scale 
travel more slowly and are dissipated by viscosity more quickly. A wave of scale 
.J(v'/2Q') is dissipated before it has propagated more than a wavelength or so; 
whereas if J ( ~ l 2 Q ' a ' ~ )  is small, the waves of scale a' which are mainly responsible 
for the growth of the Taylor columns will travel a long way before the effects of 
viscosity become appreciable. Thus the column builds up substantially as in an 
inviscid fluid, but it is ultimately of finite length, and without singularities at the 
edge. 

Two problems are treated in this paper, which are planar analogues of the one 
considered by Stewartson. We consider an infinite cylinder of circular cross- 
section with its axis perpendicular to the axis of rotation, and at rest in a rotating 
frame. In  the first problem the fluid at infinity is moved impulsively an infini- 
tesimal distance X'  parallel to the rotation axis and then brought to rest again. 
The velocities are thereafter confined to an ever-expanding region around the 
cylinder. In  the second problem the fluid is impulsively set into slow uniform 
maintained motion U', parallel to the rotation axis. In both problems it is con- 
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sistent to assume that the flow is everywhere independent of position along the 
cylinder, just as it is independent of azimuthal angle in tho axisymmetric prob- 
lem. The natural analysis is then in terms of sines and cosines instead of Bessel 
functions, and the inertial waves generated are plane, instead of axisymmetric. 
However, the points of similarity between the solutions in these different geo- 
metries are numerous. The only qualitative difference which has been detected is 
the absence in the plane case of an analogue to the persistent oscillation along the 
axis of symmetry which was noted by Stewartson, and also by Sarma (1957), and 
the dynamics of the two situations are closely related. 

As throughout this paper the fluid velocities are presumed infinitesimal, the 
equations of motion are linear and solutions may be superimposed. The solution 
to the second problem considered, in which the flow at large distances is uniform 
and maintained, may be found by the superposition of a large number of solu- 
tions of the first problem, in which there is a uniform impulsive displacement of 
large distances. The solution to the first problem is in some ways more easily 
understood, and is discussed in $5 4 and 5, and the results for the other with their 
interpretation are given in 8 6. The analysis is quite straightforward, but tends 
to be somewhat lengthy because of the numerous different cases to be considered. 
For simplicity, the derivation of all these results is postponed to $3 7 and 8, and 
may be omitted by the less conscientious reader. 

One limitation of the analysis must be continually borne in mind. The linear- 
ized equa,tions are entirely symmetrical between upstream and downstream. 
Thus for every Taylor column developing ahead of the cylinder there is an identi- 
cal one found behind the cylinder. No explanation can appear within this frame- 
work of the observed asymmetries, e.g. the waves found in the wake by Long 
(1953, 1955). 

2. The problems 
A circular cylinder of radius a’ has its axis Ox perpendicular to the basic rota- 

tion, which is Q‘ about Ox (figure 1). It is consistent for the motion to be independ- 
ent of the co-ordinate z. Using non-dimensional Cartesian co-ordinates ( x ,  y, z )  
based on length scale u’ and using a time scale (2Q’)-l, we introduce a stream 
function I,!+, y, t ) ,  so that the velocity components are 

The momentum equations for an inviscid fluid, 

Du an -+- = 0, 
Dt ax 

Dv an 
--w+- = 0, 
Dt aY 
(Dw/Dt) + v = 0, (2.4) 

include the Coriolis force. That for motion along the cylinder may be integrated 

= - p, (2.5) 
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where on the right-hand side the Lagrangian integral following a fluid particle is 
of course the lateral displacement (in the O y  direction) of the particle since the 
motion began. Thus the only way in which the motion in the Oxy-plane perpen- 
dicular to the cylinder axis is affected by rotation is through a restoring force w 
in the Oy direction on each fluid particle which is directly proportional to its 
displacement. 

%- i-; 
FIGURE 1. Planar motion round a circular cylinder. 

Equations (2.1)-(2.5) are identical to those for the two-dimensional flow of a 
non-rotating Boussinesq liquid which is initially uniformly stratified, so that the 
density decreases linearly with height y through a very small range. The buoyancy 
force on an element of fluid is then directly proportional to its vertical displace- 
ment (in the O y  direction) since the motion began, and it appears in the vertical 
momentum equation exactly as w does in equation (2.3). 

The boundary conditions are 

9 = 0, w = 0, everywhere if t < 0, (2.6) 

$ =  0 on r = 2 / ( x 2 + y 2 )  = 1 if t > 0, (2.7) 

9 = X S ( t ) y + o ( r )  as r+oo if t 3 0; (2.8) 

9 = Vy+o( r )  as r+co if t > 0. (2-9) 

and, for the first problem 

or, for the second problem 

The solution of equations (2.1)-(2.4) during the impulsive motion at t = 0, 
postulated in equation (2.8), may be obtained immediately. It is clearly irrota- 

but w increases according to equation (2.5) from zero up to a finite value which 
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depends upon position and is proportional to X .  Thereafter all velocities are 
finite, and if X is small compared to unity, the non-linear t,erms 

a a  
ax ay 

U-+W- 

in D/Dt are small compared to a/& and equations (2.2)-(2.4) may be linearized 
to give 

(2.10) 

In fact, during the impulsive displacement at t = 0, the accelerations are every- 
where so large that the linearization is valid then also, and the boundary con- 
dition (2.8) may consistently be applied direct to equation (2.10). Alternatively 
if boundary condition (2.9) is applied instead, the velocities are to begin with of 
order the Rossby number, and provided this is small the equations may be linear- 
ized in the same way. 

Equation (2.10) is solved subject to boundary conditions (2.6)-(2.8) or (2.6)- 
(2.9) by taking the Laplace transform $(x, y, s) with respect of time t ,  and obtain- 
ing a complete formal solution in terms of an integral in the complex plane of the 
transform variable s. The asymptotics as t -+ co for different regions in the (x, 9)- 
plane are then found in terms of the behaviour of $(s)  near its singularities. These 
are fairly straightforward to obtain, provided only the dominant term of the 
asymptotic expansion is required. Derivations are given in 0 8. 

3. Plane inertial waves 

derived succinctly in Chandrasekhar (1961, p. 85). If we write 
The properties of inertial waves in a uniformly rotating homogeneous fluid are 

x = rcos$, y = rsinG5, 
the surfaces 

r sin ($ - 0) = y cos 0 - x sin 0 = constant 

are planes, making an angle 0 with the rotation axis Ox. There exist solutions of 
equation (2.10) of the form 

$ = R [ A  exp i{a r sin ($ - 0) - at})] 

which represent plane inertial waves, provided 

= ksin8. (3.1) 

The frequency thus depends only on the direction of the wavefronts. The 
group velocity, however, does depend on the wavelength 27ra-l, and is parallel 
to the wave-front with magnitude cos O/a. The anisotropy of these waves, 
together with the fact that group velocity is parallel to the fluid motion and 
perpendicular to the phase velocity, accounts for almost all the novel features of 
the solutions obtained here. Two special cases are important. As 0+&r, the 
motion has a frequency equal to twice the rotation rate, and the fluid particles 
move in circles parallel to the Oyz-plane, but the group velocity vanishes. It will 
be seen that oscillations of this frequency do not propagate in the same way as 
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the others. As 6-+ 0, the period of motion tends to  infinity, and the length scale 
parallel to  the axis of rotation becomes very much larger than the lateral 
scale. The group velocity is then finite and non-zero and parallel to Ox. Waves of 
this type account for the growth of the Taylor columns. The corresponding theory 
for internal gravity waves is developed in Phillips (1966). 

4. The structure for large t 
At t = 0 + , immediately after the impulsive displacement, there are no veloci- 

ties in the (x, y)-plane, (~ = 0 ) ,  but the component w parallel to the cylinder does 
not vanish. After about one rotation period ( t  of order unity), the Coriolis force 
has induced again significant velocities (u, v), but these are rotational, and the 
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FIGURE 2 .  Asymptotic regions after an impulsive displacement, (a)  near the cylinder, 

( b )  a t  large distances. 

flow field bears no resemblance to that during the displacement. After many 
rotation periods t 9 1, a distinct structure reappears. The (x, y)-plane may then 
be divided into six distinct regions, in each of which there is a different asymptotic 
form for the solution as t+co. They are sketched in figure 2. 

I n  region I, which arises almost everywhere when the point P(x,y) under 
consideration is held fixed as t +m, the dominant motion in the first problem is 
the sum of two trains of locally plane inertial waves of different frequencies, of 
which the wavelength and amplitude decreases steadily to  zero. The source 
regions for these waves may be identified with the points of contact TI, T2 of the 
tangents through P to the cylinder (figure 3). 

I n  the second problem, in which the velocity at infinity is maintained after the 
impulsive start, the motion a t  any given point does not die out with time. Over 
the whole of region I there appears a steady velocity field (including the Taylor 
column), on which are superposed decaying trains of inertial waves very similar 
to those for the first problem. 
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Region I1 lies outside region I ,  and is obtained by holding rlt = J(x2+ y2)/t 
fixed as t-+co. Thus a point P i n  region I1 moves steadily outwards from the 
cylinder with constant velocity. The motion is a pattern of modulated inertial 
waves of wavelength comparable to the radius of the cylinder, travelling aniso- 
tropically outwards with P. The sources TI and T, can no longer be regarded as 
distinct, but form a single region of origin for the wave. 

FIGURE 3 

Region I11 forms a ring around the cylinder, and decreases in thickness like t-2 
as t increases. The velocities in region 111 do not decay with time; there is always 
an oscillation of finite, non-zero magnitude on the surface of the cylinder. As the 
thickness of this region shrinks to vanishing point, it appears as a singularity in 
the solution for region I. It may be ascribed to the remnant of inertial waves 
excited a t  time t = 0, but of such small length scale and group velocity, that they 
have not yet had time to propagate away from their neighbourhood of origin. 

The asymptotic structure in each of regions I, I1 and I11 fails along the lines 
x = -t 1, which are perpendicular to the axis of rotation and tangent to the 
cylinder. At such points the inertial waves predicted have frequency twice the 
basic rotation rate, and zero group velocity. The analytical solution in these 
regions IV, V, VI is not easily expressed in terms of tabulated functions and is 
omitted in this paper but its structure is clear. The velocity is everywhere nearly 
parallel to Oy, and near the cylinder in region VI has the functional form as t +co 

(4.1) 

(4.2) 

whereas in between in region IV, where y/ J t  is small but y J t  is, nevertheless, 
large, 

Although the dependence on y J t  and y /J t  in these formulae is suggestive of a 
diffusive process, the dynamics of these regions is still obscure. However, as 
t + co, they occupy a smaller and smaller proportion of the ( x ,  y)-plane, and the 
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oscillations in them are generally weaker than in regions I, I1 and I11 at the same 
distance from the cylinder. 

In  the second problem additional singularities appear in the solutions for each 
of regions I, 11, I11 along the lines y = & 1 which mark the edges of the Taylor 
column. The flow in these neighbourhoods is not really singular, but a different 
asymptotic representation is required. Thus three more regions VII, VIII, IX 
must be distinguished, corresponding respectively to the overlap with the first 
three. 

All these regions merge into one another, in those places where the respective 
asymptotic expansions have common areas of validity. They only become distin- 
guishable for t substantially larger than unity, and distinct only in the mathe- 
matical limit t -+ co. 

5. Results and discussion for the impulsive start (problem 1) 
(a) Region I 

To describe the solution in region I, we let 8, and 8, be the angles (between - &T 

and &r) made with the Ox axis by the tangents PT,, PT, from the point P(x, y) 
to the cylinder (figure 3). The lengths PT, and PT, are equal, being 

p = ,/(r2-- 1). 

The dominant contribution to the motion in region I is made up of two similar 
terms, associated with T, and T,, of which the first is 

For the determination of which of the signs is applicable, the reader is referred 

Equation (5.1) appears complicated, but for large t the dominant feature is the 
appearance oft sin 8, in the argument of the final cos. An infinitesimal displace- 
ment 8q perpendicular to the tangent PT, gives rise to a change 

to $8. 

t cos e 
1 sq 

P 

in the value oft sin 8,, whereas a displacement 8p parallel to the tangent does not 
alter tsinO,, and is associated with a change in @ which is smaller by O(t-l). 
Thus equation (5.1) represents modulated plane waves, with wave fronts parallel 
to the tangent PT,, with wave-number t cos 8,/p perpendicular to the tangent, and 
frequency at a given point equal to sin 8,. The remaining detail in expression (5.1) 
gives the amplitude and phase of the waves as a function of position. The magni- 
tude of the velocity is found by differentiating @ in the direction normal to the 
pIane of the waves, and is 

For fixed p, 8, this decays like t-4 so the oscillations eventually die out all over 
region I. 
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The local wave-number 
a = t cos o,/p 

is constant at  points which move along the tangent PT, away from TI with speed 
cos 8Ja, i.e. with group velocity of the local waves. Simultaneously the velocity 
amplitude falls inversely as the distance, so the kinetic energy associated with a 
given wave-number band a to a + 6a and a given sectorial angle 8, to 8, + 68, re- 
mains constant. The distribution of energy between these wave-numbers, namely 

is a property of the source region for the waves near TI. 

frequency, which in dimensionless terms is unity; 
Also found distributed over region I is an inertial oscillation with the cut-off 

This is of smaller magnitude than the waves radiating from T,, T2. It may be 
verified that the v and w components of velocity have the same magnitude, but 
are $7 out of phase, so that the velocity vector in the Oyz-plane is circularly 
polarized in the opposite direction to the rotation. This is to be expected if the 
fundamental balance in equations (2 .2 )  and (2.4) is between the accelerations and 
coriolis forces. However, the motion is distributed over the whole of space, and 
cannot be described as plane waves. The interpretation of the development of 
motions of this frequency (for which the group velocity vanishes) is not entirely 
satisfactory. 

( b )  Region 11 
If at  given finite t, r is taken sufficiently large, the angles el, 8, made with Ox by 
the tangents from P t o  the cylinder nearly coincide. It is then not correct to de- 
scribe the inertial waves produced by the cylinder as the sum of two terms like 
equation (5. l), each associated with a distinct source near TI and T2 respectively. 
Instead, if x = rcos4 y = rsin$, 

away from the direction 4 = & the dominant part of the velocity field is 

(5.4) 

In  this and subsequent expressions 4 is taken to lie between 0 and $;.. The value 
for other quadrants may be obtained by symmetry. Equation (5.4) describes a 
single system of modulated plane waves. The wave-fronts are in the radial direc- 
tion $ = constant, whereas the wave-number 

t cos $ 
a = IV(tsin4)I = --, r 
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and the local frequency is sin$. A given wave-number a is associated with a 
velocity of amplitude 

where J,(a) is the Bessel function of order 1, and the point at which a given wave- 
number is found moves radially with speed cos $/a which is again the appropriate 
group velocity from plane wave theory. The zeros of Jl(a) imply bands of quies- 
cent fluid, which expand outwards with the general pattern (figure 4). The wave- 
fronts all appear to move round circles r = constant towards the rotation axis. 

- ,I .. 

FIGURE 4. The wave pattern in region I1 at large distances from the cylinder caused by an 
impulsive displacement. 

At any finite time, at sufficient distance from the cylinder a = t cos #/ r  is small, 
and the velocity amplitude is 

cos2 $ 
X t  -__ 

which decreases rapidly with distance. If, on the other hand, a = t cos $/ r  is large, 
there is a region of overlap with region I. On replacing J1(a) by the leading term 
in its expansion for large a, equation (5.4) may be written as the sum of two terms 
like equation (5.1). Thus region I1 embraces all those places where the local 
wavelength 2na-1 is comparable with the cylinder diameter or larger, but it goes 
over to region I where the wavelength is substantially shorter. I n  region I, the 
neighbourhoods of Tl and T2 may be clearly distinguished as source regions for 
the waves. In  region I1 the whole area around the cylinder must be taken as the 
source. 

2r2 ’ 
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As q5+ -t &T, the velocities predicted by equations (5.4) vanish, so a different 
asymptotic expression is required. Equation (4.2), describing region V has the 
appropriate structure. 

Although the largest velocity amplitudes are found in the inner edge of region 
I, where the local wave-number a is very large, the energy radiated by the source 
is to be found predominantly in region 11, carried by the waves of scale compar- 
able to that of the cylinder. The energy (all kinetic) between wave-numbers CI to 
a + 6a in the sectorial angle q5 to q5 + 8q5 is 

X2cos2q5(l/a)J;(a) Sa8$. (5.5) 

The integral of this converges, and the total radiated energy is 

( c )  Region I11 
Very near the cylinder, the stream function for large values oft is 

@ - +X(J(2r-2) / t )J l ( ts inq5J(2r-2))s in  (q5-tcosq5). (5.7) 

The length of tangent 
p = J(r2- 1) - J(2r - 2 )  

is still important in the dynamics, but the radial distance from P to the cylinder 
is proportional to p 2 ,  and equation (5.7) has been put in a form which brings this 
out. On the cylinder @ vanishes, but the tangential velocity is 

a+/& = *Xsinq5sin(q5-tcosq5) on r = 1. (5 .8 )  

There is thus a finite oscillation on the cylinder, which does not decay as t-tco. 
However, this velocity only extends through the region where t sin q5J(2r - 2 )  is 
small compared to unity. The layer of maximum velocity is of thickness of order 
(t sin q5)-,, and shrinks rapidIy as t increases. The length scale around the cylinder 
is of order (t sin q5)-l throughout region 111, and hence the motion is predomin- 
antly parallel to the local tangent plane. 

This region of finite amplitude oscillation may probably be described as the 
residual of inertial waves formed at  time t = 0 of such short wavelengths that 
they have not yet had time to propagate away from the source region. At the 
outer edge of region 111, the two separate propagating wave-trains associated 
with source regions TI and T, can already be identified. As t increases shorter and 
shorter waves become discernable at  this outer edge. 

The dominant wave-number a there is almost in the radial direction, and may 
be computed from the assumption that the wave has travelled in time t a distance 
p N J(2r - 2 )  from TI or T,, with group velocity sin $/a, 

t sin q5 
J(2r- 2)' 

a =  ~- 

Such a wave will only be distinguishable if it is a substantial number of wave- 
lengths from the cylinder, i.e. if 

( r - l ) a = ~ ~ ( 2 r - 2 ) ~ s i n q 5 ~  1. 
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Nearer the cylinder, the wave dispersion has not yet had time to establish a 
dominant length scale, and the radial structure described by equation (5.7) is not 
sinusoidal. However, the motion is approximately parallel to the local tangent 
plane, and has the appropriate frequency. 

6. Results and discussion (problem 2) 
(a) Region I 

When the imposed velocity of the fluid a t  infinity is maintained after the impul- 
sive start, the solution obtained in 3 7 is formally the integral from 0 to t of the 
solution for the impulsive displacement. The features found when t is large can 
be classified, on the one hand as decaying oscillating residuals generated in the 
impulsive start, or on the other hand as constant or growing effects due to the 
systematic build-up of continuously generated wave-motions of small or zero 
frequency. 

The oscillatory motions in region I are very similar to those with the impulsive 
start. There are plane propagating inertial waves originating near TI and T,, 

together with a formally identical contribution involving 8,. 
There is also an inertial oscillation (not propagating) 

These have a phase-shift from those of the first problem, and sin O1 appears in 
the denominator of equation (6.1), but they are otherwise identical. This factor 
implies an apparent singularity along y = 

These oscillatory motions are superposed on a much larger steady flow (the 
Taylor column), given by 

1 (for the resolution see region VII). 

(6.3) 
if if IyI I Y I  < ' 1 1 - @+usgnYJ(y2- 1)  

+ O  

From this it appears that the ultimate steady state is everywhere independent of 
distance along the rotation axis, and the transverse velocity v vanishes. Within 
the Taylor column IyI < 1, the longitudinal velocity u also vanishes, and the flow 
is completely blocked by the cylinder, whereas outside the column i t  is given by 

u =  u IY I 
J(Ya- 1 ) '  

Thus only a few diameters to either side of the cylinder, the longitudinal velocity 
u is very close to the uniform value U imposed at infinity. The singularity a t  
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y = & 1 is only apparent, for at  any finite time such a point is always within 
region VII. The velocity parallel to the cylinder is given as t+00 by 

w+0 if Iyl > 1 

Because - w is a measure of the displacement in the positive Oydirection (vertical) 
since the motion began, it is seen that upstream of the cylinder all the particles 
in the column have been displaced away from the Ox axis, whereas downstream 
they have been displaced towards it. This is in the direction to be expected 
intuitively. Outside the column the ultimate displacement must be quite in- 
dependent of x, and hence, by symmetry about x = 0, it vanishes. 

(b )  Regions 11 and 111 

As r + 00 with t ,  or as r -+ 1, the expressions given for region I need modification. 
Except in the direction of the axis of rotation (q5 = 0 or m), the perturbation from 
a uniform stream steady velocity of equation (6.4) decreases like r--2 at large 
distances, and is smaller than the plane inertial waves (6.1). The largest two terms 
in the velocity field are, for 0 < q5 < in, 

Noteworthy is the appearance of sin4 in the denominator, so this expression 
cannot hold in the direction q5 = 0. The interpretation of these terms is the same 
as for problem 1. 

If r = 1 + O(t-l) as t 4 00, region I11 is appropriate, and 

+ U 2 j 2 ( r  - Jl(t sin $62/2(r - 1)) cos ($6 - t cos 4). 
t cos $6 

( 6 . 7 )  

This time cos $ appears in the denominator. 

( c )  Regions V I I  and V I I I  

The frequency of the inertial waves which propagate along the rotation axis 
vanishes. If a source of such waves is maintained, waves emitted at different 
instants of time, each with the same phase at  the moment of emission, will not 
destructively interfere but will build up. Thus, in these directions a linear growth 
in the magnitude of the velocity is to be anticipated. However, destructive inter- 
ference may occur between waves of different wave-numbers, for although they 
propagate at  different speeds a full spectrum radiated from a maintained source 
will ultimately be observed at  any given point. At  any finite time, there will be a 
cut-off wave-number above which no waves have yet reached the point under 
consideration. As more waves arrive the velocity field settles down to a steady 
value, except in certain places where the (spatial) phase of all the waves is the 
same, and the velocity goes on increasing indefinitely. 
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These considerations are completely adequate to account for the growth of the 
Taylor columns. The velocity components in the developing column (region VIII, 
see figure 5) are 

I 

I 

FIGURE 6. Additional regions for problem 2. The fully developed Taylor column is shown 
stippled. 

Here, to a good approximation, r = 1x1. A sketch of the velocity profile across the 
column for two different values of t / r  is given in figure 6. Using known expressions 
for the infinite integral, equations (6.8) reduce as t/r+.o to equations (6.4) and 
(6.5) which describe the ultimate steady state. When t / r  + 0 the disturbance 
velocities induced by the cylinder decrease like (t /r)2. For given t / r  and large ]yI 
these velocities match those in region 11. Thus equation (6.8) describes without 
singularities the development of a Taylor column across its whole breadth. 

The build up of a Taylor column is thus pictured as due to  the arrival of the 
point under consideration of waves of successively smaller wavelength, filling in 
the details of the structure. The main feature is a velocity defect of order U ,  
imparted by waves of length of order the radius of the cylinder. If  the end of the 
column is defined to be where the velocity a t  y = 0 is (say) $U,  the end of the 
column moves with constant speed given by 

j P 1 C . ) d a  = *. (6.9) 

This means r / t  N 0.67, which is very much faster than the fluid velocity and is the 
same as the group velocity of an inertial wave of half wavelength almost equal to 
the diameter of the cylinder. As tlr-tco the integrals (6.8) diverge a t  y = & 1. 
There all wavelengths combine, and the velocities u, w build up as O(t/r):  over a 
region of width y = & 1 + O(r/t). Thus singularities develop along the edge of the 
column. 

1, for 
given values of x as t -+ 00. Then near y = 1 , 

To complete the picture it is necessary to consider region VII near y = 

(6.10) 
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where u2 is an oscillatory inertial wave emitted from source region T2 according 
to equation (6.1). Equation (6.10) emphasizes that it is the distance 1x1 of P from 
the point of contact Tl of the tangent at  x = 0, y = 1 which is the controlling 
factor, and also that, for any given t ,  the maximum velocities and the most 

FIGURE 6. The velocity profile across a developing Taylor column. (a )  t/r = 1.5. 
( b )  t/r = 15. 

singular behaviour are not to be found in the Taylor column, but in region IX, 
near the cylinder. For computational purposes equation (6.10) may be put in 
the form 

where G and AS' are the Fresnel functions. This shows that the maximum value of 
u occurs when y -  1 = 1.0 (Ixl/t),  and is 0.7 J(t/ lxI) .  

( d )  Region IX 
Here 

(6.1 1) 

The thickness and structure of this region is very close to that of region I11 
(equation (6.7)). However, because the local inertial frequency vanishes, the 
velocities induced by a continuous succession of displacements of the cylinder 
ultimately build up indefinitely (at least on a linearized theory). At any given 
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time the maximum velocity is of order t, and the scale of variation in the direction 
of the velocity is of order t-1. Hence the neglected non-linear terms u(a/ax) in- 
crease like t2 ,  whereas the time derivative a/at decreases like t-l. Thus, after a time 
of order U a ,  the linearization breaks down in a localized region. However, by 
that stage the main features of the flow pattern elsewhere have already taken on 
their distinctive character, and are unlikely to be influenced greatly by further 
propagation outwards of non-linear effects. 

7. The formal solution 

Writing 
(a) The Laplace transform 

it  may be verified that the solution to equation (2.10) subject to boundary con- 
ditions (2.6), (2.7), (2.8) for the first problem is 

[2sy - {((sZ+ 1)By + isx)2- l>+ - {( (s2+ 1)iy - isx)2- 1p1, X $ = -  
2{s - (82 + 1)*} 

(7.1) 
where (s2 + 1)* > 0 for s on the positive real axis, and 

{((s2+ l)&y+isx)2- l}& - (s2+ 1)4y+isx, 

(((s2+ l)&y--isz)2- l}& N (s2+ l)ty-isx. 

as r = J(xz + Y ~ ) + c o  for given s. For this value of $ satisfies; 

(2.8); 
(i) as r+m for given s, $ N Xy, which is the Laplace transform of equation 

(ii) on r = 1, x = cos $, y = sin q5, and 

{((s2+ l)ty+isx)Z- 113 = ssin#+i(s2+ 1)6cos$ 
so $(s) = 0; 

(iii) for real positive s, 

which is throughout r > 1 an analytic function of J(sZ + 1)y + isx. Hence for real 
Dositive s 

which is the Laplace transform of equation (2.9). But throughout 9 ( s )  > 0, 
$(s) is an analytic function of s if r 2 1, so it also satisfies equation (7.2). 

For the second problem boundary condition (2.9) must be taken. It is easily 
seen that in the expression (7.1) for $, X must be replaced by U/s. Otherwise the 
two solutions are identical. 

36 Fluid Meoh. 28 
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(b)  The inverse transform 

The complete formal solution to our problem is now 

where the integral is taken in the first instance in g(s) > 0. 

(c)  First change of variable 

Before discussing the behaviour of @ it  is convenient to make a change of variable 
which eliminates one of the branch cuts inherent in $(s). 

FIGURE 7. Contours of integration in the (5  = pe'O))-plane. The signs of R(s )  are indicated 
in (a).  

We put 
8 = &<-C-l), (s2+1)% = i ( < + C - l ) ,  

so that each point in the s-plane corresponds to two points on the <-plane, but 
the correct branch of (s2 + 1): is automatically chosen if the mapping is on to the 
region (61 2 1. The imaginary axis in the s-plane, with the appropriate branch, 
becomes the contour rl, in figure 7 (a) .  Extending $(<) by analytic continuation 
into the whole g-plane, all the singularities are found on the circle p = = 1, 
and the contour of integration may be deformed into either of the forms shown 
in figures 7 (b) ,  7 (c) .  

Writing 
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and considering the integral round the unit circle p = 1 of figure 7 (b), we have for 
problem 1, 

de , (7.4) 
y cos 8 - x sin 8 

w = .FIT 27r -n cosOexp{i(O+tsino)) [ - ((y cos 6 - x sin ti+-] ] 
where the integrals are to be taken round singularities in the direction 4 ( O )  < 0. 

For problem 2,  

(d )  The singularities of $ 
The branch points of $(s) at  s = f i have been eliminated in the transformation 
to equation (7.3), but are replaced by points of stationary phase in the exponent 
exp (it sin 8) a t  8 = 5 i7r .  These are denoted by C, C' in figure 7 (b). There are also 
branch points on the unit circle at  the values of 8 for which 

ycosO-xsinB = & 1. 

These points (Al, A,, A;, A;  in figure 7 (b)) may be characterized by the angles el, 
0, made by the two tangents PT,  PT, (figure 3) from the point P, (x, y) = (r cos 9, 
rsin$) to the cylinder with the Ox axis, together with the reverse directions 
77 + el, 7r -+ 8,. Without loss of generality we will take 

- +r o,, e, < in. 
The quantities 6 = xcosB+ysinO = pcoS(#-B), 

7 = yeosO-xsinB = psin($-8), 

which are the co-ordinates of the point P, (x, y) relative to axes rotated through 
an angle 8, are important variables in this analysis. At the point A,, 

ql = 1, t1 = J( r2 -  1) = P, 

where the positive signs are taken throughout the region x > - 1, y > 0. At A,, 

72 = T 1, E, = fp, 

where the top signs are taken in x > 1, y > 0, but the signs change abruptly as x 
passes through the value 1. p = ,/(r2-- 1) is the length of the tangent PT. 

Finally, in the second problem only, there is a pole Q at 8 = 0, corresponding to 
s = 0. This is a consequence of boundary condition (2.9), and expresses the fact 
that the flow at infinity is maintained steadily as t -+a. 

(e) The choice of branch 

The branch of = {[($ + 1)y + isxy - 1>" 

= [{+(p+p-l)y + *i(p-p-1)()2- 114 

has been defined only for 5 real and positive, as T+CO. We need it for given x, y 
36-2 
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and 8 as p + 1 from above. It is an analytic function of p, 8, x, y everywhere in 
p >  1 , r >  1 . F o r p = s + , / ( s 2 + 1 ) , 8 = 0 ,  

cf, w ,/(a,+ l)y+isx as r+m 

= &(p +p-l)y + +i(p -p-l)x. 

We may move continuously to the required point by the following sequence 

0 = $p(y+ix )  as r - f m ,  p-tm, 8 =  0; - &p(q+ i [ )  as r+m, p+m, 8 +  0; 

w &(?+it) as p+m, finiter, 8 + 0; 

Only the last stage needs elaboration. If, for 1 < p < 00, cf, = a+iB; then 

2ap = 9 [ W ]  = g(pz-p-2)tv. 

Thus as p decreases from 03 to 1 neither a nor p pass through zero. But for p = 1, 
either a or p vanishes, SO the other has the sign it had at p = 03. Sgnt is + 1 if 
is positive, - 1 if [ is negative. 

8. The asymptotics for large t 
(a)  Xtructure 

If the singularities on the circle p = 1 are all distinct, the contour of integration 
may be deformed to r3, shown in figure 7 (c). Then all the contour lies in parts of 
the [-plane where 9 ( s )  < 0, except for neighbourhoods around each of the 
singularities C, C', A,, A, and Q.  Except for these neighbourhoods, the contribu- 
tion to the integral for @ is exponentially small as t - f m  and may be ignored. 
Separate contributions may be evaluated for each singularity, using an approxi- 
mate form for $, valid in that neighbourhood. The branch cuts connecting A,, A,, 
A;,  A;  must also be deformed appropriately, the correct branch on p = 1 being 
given by equation ( 7 . 7 ) .  

The structure of the solution in the physical (x,y)-plane a t  large t is closely 
bound up with the coincidence or near-coincidence of the singularities on the unit 
circle in the <-plane. For certain critical regions which decrease in size as t+m, 
the contributions cannot be evaluated from the neighbourhood of each singularity 
separately, and a somewhat more complicated contour of integration must be 
considered. Herein lies the main analytical advance of this paper. If this is not 
done, the critical regions appear as singular curves in the limit t +a. The method 
is akin to that of steepest descents (Jeffreys & Jeffreys 1956)) but it is not easy to 
write down general expressions for all the higher order terms in the asymptotic 
series. However, it  is the first dominant term which is mainly of interest, and this 
is easily obtained by ignoring all but the essential features of the integrand and 
the contour of integration in the asymptotically small neighbourhoods which 
contribute to the integral. This lays down the first term and the structure of a 
power series expansion of the integrand, and higher order corrections come from 
considering more terms in the series. 
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Each region in the (2, y)-plane must be considered separately. This entails 
substantial repetition of simiIar straightforward calculations. Only key formulae 
will be given-the interested reader may easily fill in the gaps himself. 

( b )  Region I 
In region I which covers the whole space r > 1 for fixed (x, y) as t -+ 00 with the 
exception of certain lines where the result is singular, the singularities are all 
distinct. The contour of integration is r3 in figure 7 ( c ) .  The pole at Q is only 
present in the second problem. 

IP(8 ) > 0 ‘\ 
, 
\ 
\ 

(4 (b) (4 

(c)  Region 111. 

FIGURE 8. Contours of integration near singularities. (a)  Region I. ( b )  Region 11. 

The appropriate form for $(8) in the neighbourhood of A ,  is found by putting 

8 = e,+h, pj G I, (8- 1) 

and retaining the dependence on h only in 

0 = (72- l)* N ( -  2,$,Tlh)t 

and in exp (it sin 8 )  N exp {it(sin 8, + h cos el)}. 
For large t it is only the neighbourhood lhlt = O(1) which contributes to the 
integral; hence the justification for a power series expansion in A. This may be 

P2 
tcos8,’ 

seen by putting 
= l ip  

so the exponential becomes exp {it sin 8 - $,u2}, while the contour of integration 
is the real axis of p from large negative values to large positive values (figure 
8(a ) ) .  Following equation (7 .7) ,  the correct interpretation of ( -  2[,7,h)* is 

The integration in equation (7.3), now becomes 

- W  

and for the first problem 
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This is equation (~5 .1 )~  with the signs of the quantities El, 7, determined by equa- 
tion (7.6). A formally identical contribution comes from the singularity A ,  with 
el, tl, 7, replaced by O,, t,, 7,. For the second problem equation (6.1) is established 
in an identical manner. 

Also in region I are contributions from C, C'. Here the standard method of 
steepest descents (Jeffreys & Jeffreys 1956) may be used, for the integrand in 
equations (7.4) (7.5) is an analytic function of 0 in the neighbourhood of the 
saddle points C, C' where d/dO (sin 0) = 0, and the large parameter t appears only 
in the exponent. The result is given in equations (5.3,6.2). 

In problem two there is also a pole Q at  0 = 0. The contribution from this is 
simply 2ni times the residue there. Care is required over the correct branch of 
(72- 1}3, but the result is equation (6.3). 

Region I 1  

As t --z co while rlt and # are kept fixed, the singularities A,, A ,  are separated by 
an angle 0,-0, of order l / t .  The relevant part of the contour of integration is 
now as in figure 8 (b).  If 

md 

along the arc A ,  A ,  corresponding to 4(8)  + 0 from negative values. For values 
of $h in other quadrants the sign may be obtained by symmetry. For the dominant 
term the only place that the variation with A of the integrand in equation (7.3) 
need be considered is in (7, - l)* and in the exponent exp it(sin # + h cos #). The 
substitution 

hr = sinp 
then reduces it to 

e = # + A  (Ihl 4 1, 0 < $h < gn,, 
(72- 1)t N (@A,-- 1)i = iJ( 1 - r2h2), 

On integration by parts the integral becomes one of the standard representations 
of a Bessel function, and we obtain equation (5.4). Similarly equation (6.6) is 
derived from (7.5). 

Region III 
This asymptotic representation arises as r-+ 1 from the coincidence of A ,  and 
A;, i.e. 

In  accordance with our convention that -in < el, 8, < in, this appears as a 
coincidence of A ,  and A,, but the contour of integration is as in figure 8(c). 
Putting 

then 

between A,  and A,. After the branch has been determined in this way the contour 
of integration may be deformed with the branch cuts into a small loop around 
AIA,, and as in region I1 a Bessel function emerges, equations (5.7), (6.7). 

e, 4+gn, e, = 4-1 2 7.f. 

8 = $h-$7r--A (lhl % 1, 0 < # < gn), 
(72- I}+ = J(r2 - 1 - A,) 
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Regions I V ,  V ,  V I  
These arise from the near-coincidence with C of A ,  or A,, or both. By methods 
similar to those in regions I1 and I11 great simplifications may be made in the 
integrals (7.3) and (7.54, but these are not enough to enable the result to be 
expressed in terms of tabulated functions, except for region IV where parabolic 
cylinder functions emerge. Otherwise two parameters are necessary, but these 
are of the form described in equations (4.1)-(4.3). 

Regions V I I ,  V I I I ,  I X  
Here the pole at Q is close to the singularity A,, the pair A,, A ,  and the pair A,, 
Ah respectively. The method of evaluation is exactly the same as in regions I, 11, 
I11 but the contour of integration must be extended to include the pole (figure 
9a-c). That equations (6.10), (6.8), (6.11) are indeed the correct contributions 

(a) ( b )  ( c )  
FIGURE 9. Contours of integration near singularities in problem 2. (a)  Region VII. (b )  

Region VIII. ( G )  Region IX. 

follows because on differentiating them with respect to t ,  they become equivalent 
to (5.1), (5.4) and (5.7), for the appropriate directions 

and the pole in the simplified integrand of equation (7.5) disappears, to yield the 
integrals from which (5.1) ,(5.4) and (5.7) were obtained. That the lower limit of 
integration may be taken as t = 0 follows because, although the simplification 
made in equation (7.5) by taking h small cannot be justified as an approximation 
near t = 0, the simplified expressions themselves assume definite calculable 
values at  t = 0. 

9. The effects of viscosity 
Although the analysis so far has been entirely inviscid, the insight obtained 

makes it possible to assess the effect on a Taylor column of a slight viscosity v'. 
Allowing for diffusion of vorticity, equation (2.10) becomes 
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where E = v1/2!2’a12, and the additional boundary condition must be imposed 

a$/ar = 0 on r = 1. ( 9 - 2 )  

The problem is still linear, the Laplace transform may still be taken, but there is 
no longer any simple formal solution corresponding to equation (7.1). However, 
if E is small, it  is possible to proceed heuristically, and break the problem down 
into two separate parts. 

These two parts concern the generation and the propagation of inertial waves 
respectively. Except for the smallest scales of wavelength comparable with 
(v‘ /2Qf)3,  it is to be anticipated that the generation by an impulsive change in the 
flow at infinity differs little from that for a completely inviscid fluid, and that 
Once generated, such waves will begin to propagate away from the cylinder. 
Again excepting the smallest scales, the effects of viscosity on plane waves of 
wave-number a will only be appreciable after the waves have travelled for some 
time, and are remote from any solid boundaries. Under such conditions they 
decay exponentially at a rate of €a2. Thus, while such a wave has travelled a 
distance p with its appropriate group velocity, the amplitude has decayed by a 
factor 

exp ( -  ~ a ~ p / c o s  $). (9.3) 

If E ~ / C O S  q5 is small, this factor is not significantly different from unity unless p 
is large, and it is thus consistent to compute it in this way, as ifno rigid boundaries 
were present. 

Including the factor (9 .1)  in the integral over wave-number (equation 6.8) 
which describes the superposition of inertial waves a t  the nose of a growing Taylor 
column, we obtain 

Unlike the inviscid problem, this has a finite limit everywhere as t+m, 

(9.5)  

For values of a for which €a3 is comparable with or larger than unity the integrand 
in this expression is inaccurate, but provided r $ 1, it is negligibly small for these 
values, and the total integral is unaffected. 

Equation (9.3) shows that in the linear steady-state motion of a slightly viscous 
fluid at  sufficiently low Rossby number, the structure of the Taylor column ahead 
(or behind) the cylinder closely resembles that for a growing time dependent 
column in an inviscid fluid. For the factor exp ( - m3r)  differs little from unity for 
values of the wave-number less than (er)-S, but is very small for values only 
slightly greater. There is a cut-off wave-number at each point. 

Short waves are dissipated before they reach there; longer ones travel faster 
and are damped slower and are little affected by viscosity. The distance along 
the column a t  which the velocity on the axis is gU is 

r = O - ~ S - ~ .  (9.6) 
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This computation depends on the generation of inertial waves of wavelength 
comparable with the cylinder diameter not being significantly affected by vis- 
cosity. The waves of wavelength €4 or smaller, which appear as an oscillation on 
the surface of the cylinder cannot be adequately represented by an inviscid theory 
-the boundary condition (9.2) cannot be ignored. However, these are rapidly 
damped out and presumably only affect the motion in an Ekman layer near the 
cylinder. 

It is not easy to estimate the magnitude of the non-linear terms which have 
been ignored in equation (9.1). They are, however, almost certainly negligible for 
any given value E of the viscosity, provided the Rossby number U is sufficiently 
small. 

Equation (9.3) should be compared with the structure of an axisymmetric 
wave at  large distances from a sphere in a very viscous rotating fluid (for which 
Stokes flow is a first approximation in the neighbourhood of the sphere). The 
axial velocity given by Childress (1964, p. 313), when expressed in the present 
notation is 

a2exp(-~a3r)J,(ay)da. (9-7) 

Because the motion is axisymmetric rather than two-dimensional cos ay in 
equation (9.5) is replaced by Jo(oly) in (9.7). Childress’s solution is valid only 
for cr large, so the cut off wave-number is small. Thus J,(a) N in equation 
(9.5) has become #€a2 in (9.7). This change is presumably due in part to the 
difference in geometry and in part to the difference in character of the source of 
inertial waves, which is a dipole in the present solution, and a stokeslet in that 
of Childress. 

The dynamics of the column described by equation (9.5) is also quite distinct 
from that described by Jacobs (1964) when the column is confined between two 
rigid planes perpendicular to the rotation axis. The freedom of inertial waves to  
propagate indefinitely until they are dissipated by viscosity is essential to the 
present picture. 

10. Conclusions 
The growth of a Taylor column ahead of an obstacle in a rotating fluid may be 

attributed to the propagation of inertial waves of zero frequency but finite group 
velocity. The head of the column moves with a constant speed comparable with 
waves of half-wavelength equal to the diameter of the obstacle. The build-up of 
singularities at  the edge of the column is associated with the successive arrival of 
waves of smaller and smaller scale. The effects of slight viscosity may easily be 
included (provided the non-linear terms due to finite Rossby number are even 
smaller). Small-scale waves are more rapidly damped, and the column is limited 
to finite length without singularities at  the side. 

Similar conclusions hold for blocking by a two-dimensional obstacle in a strati- 
fied fluid at  small internal Froude number. The growth of the region of stagnant 
fluid ahead and behind is then attributed to internal gravity waves. 
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The pattern of motion a t  large times after a transient disturbance may be 
completely understood in terms of the known group velocity of inertial (internal) 
waves, with the exception of a distributed non-propagating oscillation a t  the 
cut-off frequency. 

The persistent oscillation on the surface of the obstacle in an inviscid fluid is 
described as the residual of inertial (or internal) waves which are of such small 
scale that, they have not yet had time to propagate away. 
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